Deforce, B., Baesens, B., Diels, J., Janssens, P., Bonet, L.P.L., & Asensio, E.S. (2025). “Deep multi-task learning for stem water potential prediction” In Computers and Electronics in Agriculture, Vol. 229, 109747.
Deforce, B., Lee, M.-C., Baesens, B., Asensio, E. S., Yoo, J., & Akoglu, L. (2024). “TSA on AutoPilot: Self-tuning Self-supervised Time Series Anomaly Detection” In NeurIPS ‘24: Workshop on Self-Supervised Learning.
Deforce, B., Baesens, B., \& Serral, E. (2024). “Time-Series Foundation Models for Forecasting Soil Moisture Levels in Smart Agriculture” In KDD ‘24 Fragile Earth: Foundation Models for Sustainable Development.
Deforce, B., Baesens, B., Diels, J., & Asensio, E. S. (2024). “Harnessing the power of transformers and data fusion in smart irrigation.” Applied Soft Computing, Elsevier, 152, 111246.
Deforce, B., Baesens, B., Diels, J., & Asensio, E. S. (2023). “MultiMix TFT: A Multi-task Mixed-Frequency Framework with Temporal Fusion Transformers.” Conference on Lifelong Learning Agents, PMLR, 586-600.
Deforce, B., Baesens, B., Diels, J., & Serral Asensio, E. (2022). “Forecasting Sensor-data in Smart Agriculture with Temporal Fusion Transformers.” Transactions on Computational Science & Computational Intelligence. Springer Nature.
Deforce, B., Baesens, B., Diels, J., & Serral Asensio, E. (2022). “Self-Supervised Anomaly Detection for Detecting Rogue Sensors in IoT Data.” Presented at the European Conference on Operational Research (EURO 2022), Helsinki (Finland).
Deforce, B., Baesens, B., Diels, J., & Serral Asensio, E. (2022). “Self-Supervised Anomaly Detection of Rogue Soil Moisture Sensors.” Presented at the 26th pacific-asia conference on knowledge discovery and data mining, Chengdu, China.